Range of Brownian Motion with Drift

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Range of Brownian motion with drift

Let (Bδ(t))t≥0 be a Brownian motion starting at 0 with drift δ > 0. Define by induction S1 = − inf t≥0 Bδ(t), ρ1 the last time such that Bδ(ρ1) = −S1, S2 = sup 0≤t≤ρ1 Bδ(t), ρ2 the last time such that Bδ(ρ2) = S2 and so on. Setting Ak = Sk + Sk+1 ; k ≥ 1, we compute the law of (A1, · · · , Ak) and the distribution of ((Bδ(t + ρl) − Bδ(ρl) ; 0 ≤ t ≤ ρl−1 − ρl))2≤l≤k for any k ≥ 2, conditionally ...

متن کامل

Brownian Motion with Polar Drift

Consider a strong Markov process X° that has continuous sample paths in Rd (d > 2) and the following two properties. (1) Away from the origin X° behaves like Brownian motion with a polar drift given in spherical polar coordinates by n{8)/2r. Here /i is a bounded Borel measurable function on the unit sphere in RJ, with average value Ji. (2) X° is absorbed at the origin. It is shown that X° reach...

متن کامل

Fluctuations of Brownian Motion with Drift

Consider 3 dimensional Brownian motion started on the unit sphere {|x| = 1} with initial density ρ. Let ρt be the first hitting density on the sphere {|x| = t + 1}, t > 0. Then the linear operators Tt defined by Tt ρ = ρt form a semigroup with an infinitesimal generator which is approximately the square root of the Laplacian. This paper studies the analogous situation for Brownian motion with a...

متن کامل

Brownian Motion with Singular Drift by Richard

dXt = dWt + dAt , where Wt is d-dimensional Brownian motion with d ≥ 2 and the ith component of At is a process of bounded variation that stands in the same relationship to a measure πi as ∫ t 0 f (Xs)ds does to the measure f (x)dx. We prove weak existence and uniqueness for the above stochastic differential equation when the measures πi are members of the Kato class Kd−1. As a typical example,...

متن کامل

On Reflecting Brownian Motion with Drift

Let B = (Bt)t≥0 be a standard Brownian motion started at zero, and let μ ∈ R be a given and fixed constant. Set B t = Bt+μt and S t = max 0≤s≤t B s for t ≥ 0 . Then the process: (x ∨ Sμ)−Bμ = ((x ∨ S t )−B t )t≥0 realises an explicit construction of the reflecting Brownian motion with drift −μ started at x in R+ . Moreover, if the latter process is denoted by Z = (Z t )t≥0 , then the classic Lé...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2006

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-006-0012-7